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Chapter 2

THE MONTE CARLO

METHOD

The Monte Carlo method is a method of approximately solving mathematical
and physical problems by the simulation of random quantities. The terminology
• Monte Carlo' comes from the city ofMonte Carlo in the principality ofMonaco,
famous for its gambling houses.

The computational algorithm is relatively simple in Monte Carlo calcula­
tions. The algorithm consists, in general, of a process for producing a random
event. The process is repeated N times, each trial being independent of the
others, and the results of all trials are averaged together to provide an estimate
of the quantity of interest. The process is similar to performing a scientific
experiment and is sometimes called the method of stochastic, or statistical ex­
periments or trials. The error associated· with the estimated quantity is, as a
rule, inversely proportional to the square root of the number of trials. that is

error DC [J; (2.1)

It is clear that, to decrease the error by a factor of 10 (in order to obtain another
significant digit in the result), it is necessary to increase N (and the compu­
tational effort) by a factor of 100. To attain high precision in Monte Carlo
calculations is clearly impossible. The Monte Carlo method is most effective in
solving problems in which the results need to be accurate to less than a few per­
cent. It is important to point out here however that, unlike other deterministic
methods, the Monte Carlo method provides an answer with an error associated
with it, so that a confidence level in the result can be established.

The main advantage of the Monte Carlo method is its ability to handle
complex geometry. Its main limitation is that it only provides solutions at
specified locations, unlike deterministic methods which provide solutions at all
points in the space considered.

Since the Monte Carlo method is a computational process in which random
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variables are used, we begin by explaining what it is meant by a random variable
and reviewing some important statistical concepts.

2.1 Random Variables

In ordinary English usage, a random variable is the outcome of any process that
proceeds without any discernible aim or direction. Mathematically the word
random variable means that we do not know the value of a particular quantity
in any given case, but we know what values it can assume and we know the
prohabilities with which it assumes the<>e values. Then a random variable: X I

is defined discretely by the table

X = (XI X. ... Xn ) (2.2)
PIPZ···Pn

where the zis are possible values of X and the pis are the corresponding prob­
abilities. Then one writes P(X = Zi)= Pi, or px(x,)= p,.

For continuous random variables, a function p(z) in some interval (a,b) is
assigned and called the probobility deMity function, pdf, or the density distri­
bution, such that

P(a < X < b) = t p(x') dz', such that p(z) ~ 0 (2.3)

The zero-th moment of this function is normalized such that

(2.4)

The first moment of the distribution provides the so-called expected value or
mathematical expectation

E(X) =t zp(z) dz (2.5)

The second central moment defines the variance of the distribution

.,.2(X) =t [z - E(X))' p(z) dx (2.6)

The cumulative density function, ddf. is defined as

1.',F(zo) = P(X :s zo) = • p(x) dx (2.7)

(2.8)P(a' < X < b') = t' p(z) dz = F(b') - F(a')J.,
The cumulative density function represents an area under the pdf. extending
from a to Zo. The ddf. is particularly useful in Monte Carlo calculations as
shown later.

Then,
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2.2 Abstract Analysis
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An event means the occurrence of a specified outcome of an experiment. Let fl
be the event that includes all possible events. Then any event A CO, that is A
is contained in O. The probability is a real-valued function of the events of an
experiment satisfying

P(0) = 0, pen) = 1; 0 ~ peA) ~ 1 for all A C 0 (2.9)

= =
P(UA,)= Lp(A,) if A,nAj = 0. ilj

i=l i=l

(2.10)

where U reads union and signifies the fact that the event exists simultaneously
in the spaces considered, while n reads intersection and defines events common
to the concerned spaces.

The above abstract notion of probability is more general than the frequency
notion usually used in statistical analysis. In the frequency probability analysis,
in an experiment repeated n times, with an event A occurring neAl times, one
expects n(A)/n to cluster about a unique number peA). The abstract notion
of probability requires however only that the function P assigns to every event
A a number with the above probability.

The probability is a real-valued function in certain subsets of n, which we
call the event of O. Certain real-valued functions of the points of 0 are called
random variables. Let a point of 0 denoted by w and let ebe a real-valued
function on the points of O. Let

A(t) = {w le(w) ~ t} (2.11)

This defines the set of all points w such that e(w) ~ t. Then A(t) is a subset of
o which depends on the real number t.

If for every t, the set A(t) is an event, then eis called a random variable.
Then

P {A(t)} = P {wi e(w) ~ t} = P {e ::; t} ; defined for every t (2.12)

The above is the formal definition of random variables. The real-valued function
of a real variable defined by

F(t) = P {e ::; t} (2.13)

is called the distribution function or the cumulative density function. It has the
following characteristics

1. F is continuous on the right at every event t

2. F is a monotone non-decreasing function

3. F(-oo)= 0 and F(oo)= 1
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4. F(a)-F(b)= Pea < { :S b), for a < b

5. If t. is a point of discontinuity of F with a jump of height p, then
P {{ = t.} =p and there is a non-zero probability that the random vari­
able takes on the value t•.

6. If the derivative of F with respect to t exists at point t, then

li~o P {t - "'-/2 < { :S t + "'-/2} = ~ "'- = f(t)"'- (2.14)

If the derivative, f(t) exists, it is called the probability density iunction,
or simply the density function.

If N independent trials of an experiment are performed, the probability space
ON consisting of all N-tuples (w" .. 'WN) of points of 0 is

N

PN(W,". ·.,WN) = IT pew;)
;=1

Define N random variables {; on ON by

{;(W,"·· 'WN) = {(Wi), 1:S i :S N

If { is a discrete random function of N variables, such that

N

{(N) = L{'
1=1

(2.15)

(2.16)

(2.17)

is also a random variable on ON and represents the total number of occurrences
of the event W in N repetitions of the experiment.

2.2.1 Tchebycheff Theorem
This theorem states mathematically that for any random variable, {, of any dis­
tribution function with a mean, or expected value, m, and a standard deviation
t1'

1
P{\{ - ml > kt1'}:S P' .k > 0 (2.18)

(2.19)

If we use k to define an "error" < = kt1', then for the random variable {(N)

P {\{(N) _pi> <} < _1_
- 4N<2

This theorem reiterates the fact represented by equation (2.1) that to reduce
the error by a factor of two, the number of trials of the experiment must be
quadrupled.
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2.2.2 Central Limit Theorem
This is also called the law of large numbers and states essentially that e(N)
will be approximately normally distributed even ifeis not. The theorem states
formally that if6," ·eN is a sequence of independent and identically distributed
random variab~es with a common mean m and variance (7'2, then

-(2.20)

(2.21)

(2.23)

is asymptotically normal (m,u/N), that is

lim P { ( - ;:, ::; .,} = 2 lr-f< exp(-t'/2) dt
N-~ u/v N v)r -co

Tbe theorem assumes that both m and u exist, that is they are given by abso­
lutely convergent integrals. Applying the Tchebycheff's theorem, then

P{I~~I < <}eads to2~i:.-"1' dt- 2~J.~ exp(-t'/2) dt

(2.22)
In the above equation leads to implies that they are asymptotically equal.

- '21"·/(·I..{N
P {leN - m\ < <} =j; 0 exp(_t2 /2) dt

The central-limit theorem is the backbone of the Monte Carlo method. The
average value ( is used as an utimate of the random variable e. This value
approaches the true expected value, m, as the number of trials approach infinity.
The variability estimated by

(2.24)

is called the sample variance. It is not directly an estimate of the distribution
variance. It can be stated however that

(2.25)

The confidence interval in the estimated vaIue of ( can be defined by [(+
(Tete - (Tel, where

u
(Tc=-

,fN
Since u is not known, the following estimate is used

[ ( )2)u 2 1 IN IN
u~=-=-_- -Le'- -Le,

N N 1 N ,=1 N ,=1

(2.26)

(2.27)
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A useful quantity used in Monte Carlo computations is called the fraction
slandard deviation, fsd. , defined as

<r,
fsd. = 1" (2.28)

An fsd. of less than 0.05, or 5 %, is usually required in Monte Carlo calculations.

2.3 Construction of Samples

The realization of a random variable, €, from d. pelf f( x) is obtai:;,cd by COn­

structing a sequence of numbers t1, "', tn, such that

P {a < Ii ~ b} = [ f(x)dx (2.29)

and

(2.31)P{a<Pi~6}=[ldx=6-a

P{a < 1.,,, ... ,I',n ~ b} =P{a <1.,1 ~ b} .. ·P{a < I',n ~6} =[1.6

f(x) dXr

(2.30)
The above equation inlplies that the random variables e.,1, .. " {',n, are mutually
independent, ift',l, ""f ti,n, are all different.

The sequence of random numbers, f>J., "', p", such that 0 ~ Pi ~ 1, rep­
resents samples drawn independently from a uniform pdf. in the interval [0,1].
that is

and

P {a < Pi""', Pin ~ 6} = (6 - a)n, i,,· .. ,i", are all different (2.32)

Now by setting a sampled random number P equal to the ddt
F(x}, that is

F(x) =P{{ ~ x} = [ f(/) dt =P (2.33)

one can solve for z, and consequently obtain a value that is sampled from the
distribution f(z).

For a discrete distribution, One constructs the ddf.

F(z) = 2:>.
·SZi

(2.34)

where Pi is the probability of occurrence of z•. The sampling of an Zj is then
achieved as follows

j-1 j

I:Pi < P ~ I:Pi
i=1 f;z:l

(2.35)

where P is a random number uniformly distributed in the interval (0,1).
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2.4 Random Number Generation

9

Digital random number generators are nowadays a standard feature in almost all
.computer systems. The generated numbers are called pseudo random numbers as
they are not purely random. They must satisfy however two important criteria:

Equi-distribution each number has the same probability of occurrence as any
other number in the set.

Independence the occurrence of any given number should not depend on the
previous occurrence or any subsequent OCCUrrence of any other number.

The modulus method is perhaps the most widely used method. Given any
constant a the random numbers are generated as follows

Pi = a Pi-l (mod M) (2.36)

where M = 21 , and I: is the number of bits per word in the computer being
used. Modulus is a number or quantity that produces the same remainder when
divided into each of two quantities. A = B (mod M) reads A is congruent to
B module M and means A is the remainder of B /M'.

2.5 Monte Carlo Simulation of Particle Trans­
port

2.5.1 Essential Requirements
Source

The position, geometry, directional distribution and energy distribution of the
source must be specified. In transient analysis, the change of the source with
time must be also known. Fission sources and collision sources are determined by
the cross section of the material and need not be specified as input parameters.
The fission distribution with energy, X (E), must however be specified, in order
to determine the energy of the emerging neutron. A source particle is usually
assigned a statistical weight, W, the significance of which is examined later.

Geometry

The Monte Carlo method can handle complex geometries. The geometry must
however be specified in such a ",ay that enables tracking of the particle through­
out the system and relating the position of the particle within the system to the
material, or more specifically material cross section.

The geometry can be specified via analytical geometry procedures, which
define the surfaces of different geometrical objects. Alternatively, the geometry
may be specified via a set of elementary bodies, combined together using logical

'F..........ple: 15 (mod 13) =2
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operato... to form a zone ofa particular material. This is called the combinatorial
geometry method and is utilized in the MORSE code.

Material Cross Sections

The cross sections for the different materials encountered must be supplied as
a function of energy. The Legendre expansion coefficients for each material are
also needed, if an anisotropic scattering is considered.

The cross sections arc processed prior to the simulation to provide the prob­
ability table, which determines the distance to be travelled by the particle until
the next collision, the outcome of the collision, and the outgoing energy and
angle of a scattering event; in addition to the number of neutrons per fission for
fissile materials.

Scoring

The scoring process is determined by a variety of estimators which evaluate the
lIuence, or lIuence-like quantities, at a point or a region. Statistical estimateS,
including tbe average and the varianee of the average are estimated at the end
of the random walk process.

The body crossing estimator evaluates the lIux crossing a surface, by accu­
mulating the weight of particles crossing the surfaces divided by the absolute
value of the cosine of the angle between the normal to the surfaee and direction
of the incident particle. Provisions are made to avoid small angles cosines.

The track length Cltimatorevaluates the lIuenee by summing the track length
of particles crossing a given zone, divided by the volume of the zone. This is
usually suitable for evaluating the lIuenee in void or air regions, and regions
containing a low density material.

The collision density estimator adds up the weight of particles colliding
within a zone, divided by the total cross section of the material and the volume
of the zone. The estimator provides adequate estimates for the lIuenee in regions
of high density materials, where a large number of collisions are anticipated.

In all the above estimators, the particle must visit the region, or surface of
interest. In situations where the probability of the particles reaching the region
of interest is low, indirect estimates, called statistical estimation are used. These
estimators evaluate the probability of the next collision being at the detector
site. This called the ne:r:l event estimator and is particularly useful for point
detectors, where there is only one possible position for the "next collision".
Note that the particle being tracked does not alter its original position, only
the probability of the next collision being at the detector site is evaluated and
stored.

2.5.2 Example
In order to illustrate the above points, let us consider the relatively simple
problem ofevaluating the lIuenee through a shielding slab, with a neutron souree
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on one side and a detector on the other side.

Source Parameters

If we assume a point, mono-energetic and isotropic source, then only th~. di­
rection of the incident particle need to be sampled. in a steady state problem.
Since we are not interested in neutrons directed away from the target. the an­
gular probability becomes

p(O)dO =dO =sin6 d6 drf> =dcos6 drf>
2" 2" 2"

(2.37)

where 6 is the polar angle and rf> is the azimuthal angle. Equating the cumulative
probability for cos 6 to a random number PI sampled from a uniform distribution
in the interval (0.1). then

r:'1 eos6+ 1
PI = -dcoslJ' = --;;-'-"

-1 2 2

The inversion of the above leads to an equation for selecting 6

Similarly, the angle t/> is sampled from the relationship

where P2 is another random number.

(2.38)

(2.39)

(2.40)

Distance of Travel

Next. One needs to determine the distance the neutron will travel until it col­
lides. The probability of a neutron experiencing its first interaction between
the distances '" and '" + d", is equal to E,e-I:··. where E, is the total cross
section of the material encountered. As shown earlier, equation (2.44) provides
the method for sampling the distance, "', the neutron will travel until it collides.

Type of Interaction

The type of interaction which takes place at the position defined by the distance
'" is determined by the so-eaIled .ctiv.tioll cro.. .ectio.... which are usually
EIC:auert IIE/i.,ion, and EcCI,curco In certain circumstances, the cross section of
some particular reactions, such as the (n,p) reaction, may be specified. The
activation table of probabilities is converted into a cumulative probability table,
enabling the selection of the proper interaction.

If the interaction is determined to be an absorption process, the random
walk of the particle may be terminated. This is called .Il.log MOllt. C.rlo
and is not oft.en used as it may results in early termination of the random
walk. Alternatively. a Iloll-.Il.log process is used in which the particle weight
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dE
P(E)dE = E,(I- er) (2.41)

Equating the cumulative probability to some random number 1'3. one obtains

is reduced by the non-absorption probability. (Et..., - E..,.ur.)/ E••••,. and a
particle scattering or fission is sampled. This process allows the particle to fully
complete its path within the system. until it escapes the system or is terminated
by a weight cut-off. or an energy cut-off, or some other pre-specified process.

Energy of Outgoing Particle

In a non-fissile material, the only interaction possible in a non-analog Monte
Carlo is particle scattering. One needs then to determine the energy and angle
of the particle emerging from the collision. Let us assume an elastic isotropic
neutron scattering process. Then, the energy of the outgoing particle can lie
any where from the energy of the incident particle E, to the minimum possible
energy erE. where er = [(A -I)j(A +1)]', with A being the mass number of
the element considered. The probability of the particle reaching an energy E is
given by

E = I'3Ei(I - er) +erEi (2.42)

Problem Devise a method for determining the outgoing energy for isotropic
scattering in a chemical compound such as water.

The outgoing energy is sampled from the above equation. Since isotropic scat­
tering is assumed, the outgoing direction can be sampled using a procedure
similar to that used for the source, except that the whole 4.. of the azimuthal
angle must be considered.

Once the direction and energy of the scattered particle are determined. the
distance of flight until the next collision is evaluated, and so on. Note, however,
in this onlHlimensionai problem it is sufficient to determine the :t position of
the collision site, as :t = :ti +dcos 6sin <fI, where :ti is the initial position of the
particle and d is the distance the particle travels between collisions.

Scoring

A simple scoring process is to employ the boundary crossing estimator at the
boundary far away from the source. For a deep penetration problem, e.g.
. thick shield, the probability of the particle crossing the shielding slab is

very low. Some B<>-called biasing or importance .ampling techniques can be
employed. These techniques involve .plitting which increases the number of
particles travelling towards the location of interest (forward in the problem
coD8idered), and ",..ian ro.lefte which kills most of the particles travelling in
the • wrong" direction. The uponential tran./ormation technique may also be
employed. In this technique, the total cross section is artificially decreased, to
enable the particle path length between collisioD8 to stretch. and coD8equently
be able to cross the slab. In all these biasing techniques. the particle weight is
adjusted such that the resulting estimates are .di....d.
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2.6 Work Problems
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1. Prove that the
u 2(X) = E [(X - E(X»'] (2.43)

2. Show that the following procedure represents sampling from the distribu-
tion Ee-Ez

J where E is a constant ~

1
x = --lup

E
(2.44)
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